Altivar 71
Modbus/Uni-Telway card Modbus protocol

User's manual
VW3 A3 303

11/2010


## Contents

1. Before you begin ..... 3
2. Documentation structure ..... 4
3. Introduction ..... 5
4. 5. Presentation ..... 5
1. 2. Notation ..... 5
1. Hardware setup ..... 6
2. 3. Receipt ..... 6
1. 2. Hardware description ..... 6
1. 3. Installing the card in the drive ..... 6
1. 4. Switch coding ..... 7
1. Connecting to the bus ..... 9
2. 3. Wiring recommendations ..... 9
1. 2. Modbus RS485 standard ..... 9
1. 3. Connection via RJ45 wiring system ..... 10
1. 4. Connection via junction boxes ..... 12
1. Configuration ..... 14
2. 3. Communication parameters ..... 14
1. 2. Control - Command ..... 15
1. 3. Communication scanner ..... 18
1. 4. Communication faults ..... 19
1. 5. Monitored parameters ..... 20
1. Diagnostics ..... 21
2. 3. Checking the address ..... 21
1. 2. LEDs ..... 21
1. 3. Control - Command ..... 22
1. 4. Communication scanner ..... 23
1. 5. Communication fault ..... 24
1. 6. Card fault ..... 24
1. Modbus protocol ..... 25
2. 3. Principle ..... 25
1. 2. Modes ..... 26
1. 3. Modbus functions available ..... 27
1. 4. Read Holding/Input Registers (3/4) ..... 27
1. 5. Write Single Register (6) ..... 28
1. 6. Diagnostics (8) ..... 29
1. 7. Get Comm Event Counter (11 = 16\#0B) ..... 30
1. 8. Write Multiple Registers ( $16=16 \# 10$ ) ..... 30
1. 9. Read/Write Multiple Registers ( $23=16 \# 17$ ) ..... 31
1. 10. Read Device Identification ( $43=16 \# 2 B$ ) ..... 32
1. 11. Communication scanner ..... 34
1. 12. Exception responses ..... 37
1. 13. Read non-existent or protected parameters ..... 38
1. Appendix ..... 39
2. 3. RS485 standard ..... 39
1. 2. Modbus 2-wire standard schematic ..... 40
1. 3. Modbus 4-wire standard schematic ..... 41
1. 4. Uni-Telway schematic ..... 42
1. 5. 2-wire Jbus schematic ..... 43
1. 6. Creating a Modbus bus using non-standard equipment ..... 44
1. 7. RS485 schematic for the card ..... 46
1. 8. Card connector pinout ..... 46

While every precaution has been taken in the preparation of this document, Schneider Electric SA assumes no liability for any omissions or errors it may contain, nor for any damages resulting from the application or use of the information herein.

The products and options described in this document may be changed or modified at any time, either from a technical point of view or in the way they are operated. Their description can in no way be considered contractual.

## 1. Before you begin

Read and understand these instructions before performing any procedure with this drive.

## DANGER

## HAZARDOUS VOLTAGE

- Read and understand the Installation Manual before installing or operating the Altivar 71 drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical standards in force concerning protective grounding of all equipment.
- Many parts of this variable speed drive, including the printed circuit boards, operate at the line voltage. DO NOT TOUCH. Use only electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA/+ and PC/- or across the DC bus capacitors.
- Install and close all covers before applying power or starting and stopping the drive.
- Before servicing the variable speed drive
- Disconnect all power.
- Place a "DO NOT TURN ON" label on the variable speed drive disconnect.
- Lock the disconnect in the open position.
- Disconnect all power including external control power that may be present before servicing the drive. WAIT 15 MINUTES to allow the DC bus capacitors to discharge. Then follow the DC bus voltage measurement procedure given in the installation manual to verify that the DC voltage is less than 45 VDC. The drive LEDs are not accurate indicators of the absence of DC bus voltage.

Electric shock will result in death or serious injury.

## CAUTION

## EQUIPMENT DAMAGE

Do not operate or install any drive that appears damaged.
Failure to follow these instructions can result in equipment damage.

## 2. Documentation structure

The following Altivar 71 technical documents are available on the Schneider-Electric website www.schneider-electric.com.

## - Installation Manual

This manual describes:

- How to assemble the drive
- How to connect the drive

■ Programming Manual
This manual describes:

- The functions
- The parameters
- How to use the drive display terminal (integrated display terminal and graphic display terminal)

■ Communication Parameters Manual
This manual describes:

- The drive parameters with specific information (addresses, formats, etc.) for use via a bus or communication network
- The operating modes specific to communication (state chart)
- The interaction between communication and local control

■ Modbus ${ }^{\circledR}$, CANopen ${ }^{\circledR}$, Ethernet ${ }^{\text {m" }}$, Profibus ${ }^{\circledR}$, INTERBUS, Uni-Telway, DeviceNet ${ }^{\text {m" }}$, Modbus ${ }^{\circledR}$ Plus and FIPIO manuals
These manuals describe:

- Connection to the bus or network
- Configuration of the communication-specific parameters via the integrated display terminal or the graphic display terminal
- Diagnostics
- Software setup
- The communication services specific to the protocol


## Altivar 58/58F Migration Manual

This manual describes the differences between the Altivar 71 and the Altivar 58/58F. It explains how to replace an Altivar 58 or 58 F , including how to replace drives communicating on a bus or network.

## 3. Introduction

## 3. 1. Presentation

The communication card (catalog number VW3 A8 303) is used to connect an Altivar 71 drive to a Uni-Telway or Modbus bus.
This manual only describes how to use the Modbus protocol. For Uni-Telway, please refer to the Uni-Telway protocol manual.
The data exchanges permit access to all Altivar 71 functions:

- Configuration
- Adjustment
- Control and command
- Monitoring
- Diagnostics

The card has a female 9-way SUB-D connector for connection to the Modbus bus.
The connection cables and accessories should be ordered separately.
The drive address should be configured using the switches on the card.
The graphic display terminal or the integrated display terminal offer numerous functions for communication diagnostics.
Note: The Modbus card supports the following services in addition to those provided by the drive's integrated ports:

- 2-wire and 4-wire RS485
- Choice of line polarization
- RTU and ASCII modes
- More diagnostic subcodes
- More Modbus functions (04: Read Input Registers and 11: Get Comm Event Counter)


## 3. 2. Notation

## Drive terminal displays

The graphic display terminal menus are shown in square brackets.
Example: [1.9 COMMUNICATION]
The integrated 7-segment display terminal menus are shown in round brackets.
Example: ( $\subset \square \sqcap-)$
Parameter names displayed on the graphic display terminal are shown in square brackets.
Example: [Fallback speed]
Parameter codes displayed on the integrated 7-segment display terminal are shown in round brackets.
Example: (L F F)

## Formats

Hexadecimal values are written as follows: 16\#
Binary values are written as follows: 2\#

## Abbreviations

[^0]
## 4. Hardware setup

## 4. 1. Receipt

Check that the card catalog number marked on the label is the same as that on the delivery note corresponding to the purchase order. Remove the option card from its packaging and check that it has not been damaged in transit.

## 4. 2. Hardware description

LEDs


## 4. 3 . Installing the card in the drive

See the Installation Manual.

## 4. Hardware setup

## 4. 4. Switch coding

## ■ Choosing polarization

Normal setting for a Modbus bus:

- No polarization at drive level

Special setting (see "Creating a Modbus bus using non-standard equipment" on page 44):

- $4.7 \mathrm{k} \Omega \mathrm{RS} 485$ line polarization at drive level


## Coding the address

The address switches are used to encode the address (1 to 247) of the drive on the bus.
The switch settings can only be changed when the drive is turned off.
The correspondence between the value and the position of the switch is as follows:

- 0 = OFF = Switch in upper position
- $1=\mathrm{ON}=$ Switch in lower position

The address is binary-coded.

## Examples:



Address 11 = 2\#0000 1011


Address 34 = 2\#0010 0010

## 4. Hardware setup

The table below indicates the positions of the 8 switches for all configurable addresses:

| Address | $\begin{gathered} \text { Switches } \\ 12345678 \end{gathered}$ | Address | $\begin{gathered} \text { Switches } \\ 12345678 \end{gathered}$ | Address | $\begin{aligned} & \text { Switches } \\ & 12345678 \end{aligned}$ | Address | $\begin{gathered} \text { Switches } \\ 12345678 \end{gathered}$ | Address | $\begin{gathered} \text { Switches } \\ 12345678 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 00000000 | 52 | 00110100 | 104 | 01101000 | 156 | 10011100 | 208 | 11010000 |
| 1 | 00000001 | 53 | 00110101 | 105 | 01101001 | 157 | 10011101 | 209 | 11010001 |
| 2 | 00000010 | 54 | 00110110 | 106 | 01101010 | 158 | 10011110 | 210 | 11010010 |
| 3 | 00000011 | 55 | 00110111 | 107 | 01101011 | 159 | 10011111 | 211 | 11010011 |
| 4 | 00000100 | 56 | 00111000 | 108 | 01101100 | 160 | 10100000 | 212 | 11010100 |
| 5 | 00000101 | 57 | 00111001 | 109 | 01101101 | 161 | 10100001 | 213 | 11010101 |
| 6 | 00000110 | 58 | 00111010 | 110 | 01101110 | 162 | 10100010 | 214 | 11010110 |
| 7 | 00000111 | 59 | 00111011 | 111 | 01101111 | 163 | 10100011 | 215 | 11010111 |
| 8 | 00001000 | 60 | 00111100 | 112 | 01110000 | 164 | 10100100 | 216 | 11011000 |
| 9 | 00001001 | 61 | 00111101 | 113 | 01110001 | 165 | 10100101 | 217 | 11011001 |
| 10 | 00001010 | 62 | 00111110 | 114 | 01110010 | 166 | 10100110 | 218 | 11011010 |
| 11 | 00001011 | 63 | 00111111 | 115 | 01110011 | 167 | 10100111 | 219 | 11011011 |
| 12 | 00001100 | 64 | 01000000 | 116 | 01110100 | 168 | 10101000 | 220 | 11011100 |
| 13 | 00001101 | 65 | 01000001 | 117 | 01110101 | 169 | 10101001 | 221 | 11011101 |
| 14 | 00001110 | 66 | 01000010 | 118 | 01110110 | 170 | 10101010 | 222 | 11011110 |
| 15 | 00001111 | 67 | 01000011 | 119 | 01110111 | 171 | 10101011 | 223 | 11011111 |
| 16 | 00010000 | 68 | 01000100 | 120 | 01111000 | 172 | 10101100 | 224 | 11100000 |
| 17 | 00010001 | 69 | 01000101 | 121 | 01111001 | 173 | 10101101 | 225 | 11100001 |
| 18 | 00010010 | 70 | 01000110 | 122 | 01111010 | 174 | 10101110 | 226 | 11100010 |
| 19 | 00010011 | 71 | 01000111 | 123 | 01111011 | 175 | 10101111 | 227 | 11100011 |
| 20 | 00010100 | 72 | 01001000 | 124 | 01111100 | 176 | 10110000 | 228 | 11100100 |
| 21 | 00010101 | 73 | 01001001 | 125 | 01111101 | 177 | 10110001 | 229 | 11100101 |
| 22 | 00010110 | 74 | 01001010 | 126 | 01111110 | 178 | 10110010 | 230 | 11100110 |
| 23 | 00010111 | 75 | 01001011 | 127 | 01111111 | 179 | 10110011 | 231 | 11100111 |
| 24 | 00011000 | 76 | 01001100 | 128 | 10000000 | 180 | 10110100 | 232 | 11101000 |
| 25 | 00011001 | 77 | 01001101 | 129 | 10000001 | 181 | 10110101 | 233 | 11101001 |
| 26 | 00011010 | 78 | 01001110 | 130 | 10000010 | 182 | 10110110 | 234 | 11101010 |
| 27 | 00011011 | 79 | 01001111 | 131 | 10000011 | 183 | 10110111 | 235 | 11101011 |
| 28 | 00011100 | 80 | 01010000 | 132 | 10000100 | 184 | 10111000 | 236 | 11101100 |
| 29 | 00011101 | 81 | 01010001 | 133 | 10000101 | 185 | 10111001 | 237 | 11101101 |
| 30 | 00011110 | 82 | 01010010 | 134 | 10000110 | 186 | 10111010 | 238 | 11101110 |
| 31 | 00011111 | 83 | 01010011 | 135 | 10000111 | 187 | 10111011 | 239 | 11101111 |
| 32 | 00100000 | 84 | 01010100 | 136 | 10001000 | 188 | 10111100 | 240 | 11110000 |
| 33 | 00100001 | 85 | 01010101 | 137 | 10001001 | 189 | 10111101 | 241 | 11110001 |
| 34 | 00100010 | 86 | 01010110 | 138 | 10001010 | 190 | 10111110 | 242 | 11110010 |
| 35 | 00100011 | 87 | 01010111 | 139 | 10001011 | 191 | 10111111 | 243 | 11110011 |
| 36 | 00100100 | 88 | 01011000 | 140 | 10001100 | 192 | 11000000 | 244 | 11110100 |
| 37 | 00100101 | 89 | 01011001 | 141 | 10001101 | 193 | 11000001 | 245 | 11110101 |
| 38 | 00100110 | 90 | 01011010 | 142 | 10001110 | 194 | 11000010 | 246 | 11110110 |
| 39 | 00100111 | 91 | 01011011 | 143 | 10001111 | 195 | 11000011 | 247 | 11110111 |
| 40 | 00101000 | 92 | 01011100 | 144 | 10010000 | 196 | 11000100 |  | 11111000 |
| 41 | 00101001 | 93 | 01011101 | 145 | 10010001 | 197 | 11000101 |  | 11111001 |
| 42 | 00101010 | 94 | 01011110 | 146 | 10010010 | 198 | 11000110 |  | 11111010 |
| 43 | 00101011 | 95 | 01011111 | 147 | 10010011 | 199 | 11000111 |  | 11111011 |
| 44 | 00101100 | 96 | 01100000 | 148 | 10010100 | 200 | 11001000 |  | 11111100 |
| 45 | 00101101 | 97 | 01100001 | 149 | 10010101 | 201 | 11001001 |  | 11111101 |
| 46 | 00101110 | 98 | 01100010 | 150 | 10010110 | 202 | 11001010 |  | 11111110 |
| 47 | 00101111 | 99 | 01100011 | 151 | 10010111 | 203 | 11001011 |  | 11111111 |
| 48 | 00110000 | 100 | 01100100 | 152 | 10011000 | 204 | 11001100 |  |  |
| 49 | 00110001 | 101 | 01100101 | 153 | 10011001 | 205 | 11001101 |  |  |
| 50 | 00110010 | 102 | 01100110 | 154 | 10011010 | 206 | 11001110 |  |  |
| 51 | 00110011 | 103 | 01100111 | 155 | 10011011 | 207 | 11001111 |  |  |

Note: Address 0 is not valid.

## 5. Connecting to the bus

## 5. 1. Wiring recommendations

- Use Schneider-Electric-approved cables and wiring accessories to ensure good transmission quality (matched impedance, immunity, shielding connection, etc.).
- Keep the Modbus cable away from the power cables ( 30 cm minimum).
- Be sure to cross the Modbus cable and the power cables at right angles.
- Whenever possible, connect the bus cable shielding to the protective ground, e.g., to the ground of each device if this ground is connected to the protective ground.
- Install a line terminator at both ends of the line.
- Ensure the correct line polarization.
- Connect the common polarity ("Common" signal) to the protective ground at one or more points on the bus.

For more information, please refer to the TSX DG KBL E guide: "Electromagnetic compatibility of industrial networks and fieldbuses".

## 5. 2. Modbus RS485 standard

The characteristics and accessories mentioned in this section (" 5 . Connecting to the bus") comply with the Modbus standard. Other non-Modbus-standard RS485 wiring diagrams are possible. Please see the Appendix for further information. The latest generation of Schneider-Electric equipment conforms to Modbus (2-wire RS485).

Main characteristics:

| Maximum length of bus | 1000 m at $19,200 \mathrm{bps}$ |
| :--- | :--- |
| Maximum number of stations | 32 stations, i.e., 31 slaves (without repeater) |

## 5. Connecting to the bus

## 5. 3. Connection via RJ45 wiring system



1. Master (PLC, PC or communication module)
2. Cable depending on the type of master (see table)
3. Splitter block LU9 GC3
4. Drop cable VW3 A58 306 Ree
5. Line terminators VW3 A8 306 RC
6. Modbus cable TSX CSA •00

Connection accessories

| Description |  | Ref. | Catalog number |
| :--- | :--- | :--- | :--- |
| Modbus splitter block | 10 RJ45 connectors and 1 screw terminal block | 3 | LU9 GC3 |
| Modbus T-junction boxes | With integrated cable $(0.3 \mathrm{~m})$ |  | VW3 A8 306 TF03 |
|  | With integrated cable (1 m) | VW3 A8 306 TF10 |  |
| Line terminators | $\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$ | 5 | VW3 A8 306 RC |
| For RJ45 connector $\mathrm{R}=150 \Omega$ (specific to "Jbus schematic" page 43) | 5 | VW3 A8 306 R |  |

## - Connection cables

| Description | Length (m) | Connectors | Ref. | Catalog number |
| :---: | :---: | :---: | :---: | :---: |
| Cables for Modbus bus | 1 | 1 RJ45 connector and | 4 | VW3 A58 306 R10 |
|  |  | 1 male 9-way SUB-D connector |  |  |
|  | 3 | 1 RJ45 connector and | 4 | VW3 A58 306 R30 |
|  |  | 1 male 9-way SUB-D connector |  |  |
|  | 3 | 1 RJ45 connector and 1 stripped end |  | VW3 A8 306 D30 |
|  | 0.3 | 2 RJ45 connectors |  | VW3 A8 306 R03 |
|  | 1 | 2 RJ45 connectors |  | VW3 A8 306 R10 |
|  | 3 | 2 RJ45 connectors |  | VW3 A8 306 R30 |
| RS485 double shielded twisted | 100 | Supplied without connector | 6 | TSX CSA 100 |
| pair cables | 200 | Supplied without connector | 6 | TSX CSA 200 |
|  | 500 | Supplied without connector | 6 | TSX CSA 500 |

## 5. Connecting to the bus

## ■ Connection cables for the master

| Type of master | Master interface | Description | Catalog number |
| :---: | :---: | :---: | :---: |
| Twido PLC | Adaptor or mini-DIN RS485 interface module | 3 m cable equipped with a mini-DIN connector and an RJ45 connector | TWD XCA RJ030 |
|  | Adaptor or screw terminal RS485 interface module | 3 m cable equipped with an RJ 45 connector and stripped at the other end | VW3 A8 306 D30 |
| TSX Micro PLC | Mini-DIN RS485 connector port | 3 m cable equipped with a mini-DIN connector and an RJ45 connector | TWD XCA RJ030 |
|  | PCMCIA card (TSX SCP114) | Stripped cable | TSX SCP CM 4030 |
| TSX Premium PLC | TSX SCY 11601 or TSX SCY 21601 module (25-way SUB-D socket) | Cable equipped with a 25-way SUB-D connector and stripped at the other end (for connection to the screw terminals of the LU9GC3 splitter block) | TSX SCY CM 6030 |
|  | PCMCIA card (TSX SCP114) | Stripped cable | TSX SCP CM 4030 |
| Ethernet bridge <br> ( 174 CEV 300 20) | Screw terminal RS485 | 3 m cable equipped with an RJ45 connector and stripped at the other end | VW3 A8 306 D30 |
| Profibus DP gateway (LA9P307) | RJ45 RS485 | 1 m cable equipped with 2 RJ45 connectors | VW3 P07 306 R10 |
| Fipio (LUFP1) or Profibus DP (LUFP7) or DeviceNet (LUFP9) gateway | RJ45 RS485 | 0.3 m cable equipped with 2 RJ45 connectors or 1 m cable equipped with 2 RJ45 connectors or 3 m cable equipped with 2 RJ45 connectors | VW3 A8 306 R03 or VW3 A8 306 R10 or VW3 A8 306 R30 |
| Serial port PC | Male 9-way SUB-D RS232 serial port PC | RS232/RS485 converter and 3 m cable equipped with an RJ45 connector and stripped at the other end (for connection to the screw terminals of the LU9GC3 splitter block) | TSX SCA 72 and VW3 A8 306 D30 |

## 5. Connecting to the bus

## 5. 4. Connection via junction boxes



1. Master (PLC, PC or communication module)
2. Modbus cable depending on the type of master (see table)
3. Modbus cable TSX CSA•00
4. Subscriber sockets TSX SCA 62
5. Modbus drop cable VW3 A8 3062

- Connection accessories
\(\left.$$
\begin{array}{l|l|}\hline \text { Description } & \text { Ref. }\end{array}
$$ \begin{array}{l}Catalog <br>

number\end{array}\right]\)| TSX SCA 62 |  |
| :--- | :--- |
| Subscriber socket <br> 2 female 15-way SUB-D connectors, 2 screw terminals, and an RC line terminator, <br> to be connected using cable VW3 A8 306 or VW3 A8 306 D30 | 4 |

- Connection cables

| Description | Length (m) | Connectors | Ref. | Catalog number |
| :---: | :---: | :---: | :---: | :---: |
| Cables for Modbus bus | 3 | 1 9-way SUB-D connector and 1 male 15-way SUB-D connector for TSX SCA 62 | 6 | VW3 A8 3062 |
| RS485 double shielded twisted pair cables | 100 | Supplied without connector | 3 | TSX CSA 100 |
|  | 200 | Supplied without connector | 3 | TSX CSA 200 |
|  | 500 | Supplied without connector | 3 | TSX CSA 500 |

## 5. Connecting to the bus

## ■ Connection cables for the master

| Type of master | Master interface | Description | Catalog number |
| :---: | :---: | :---: | :---: |
| Twido PLC | Adaptor or screw terminal RS485 interface module | Modbus cable | TSX CSA100 or TSX CSA200 or TSX CSA500 |
| TSX Micro PLC | Mini-DIN RS485 connector port | Tap junction | TSX P ACC 01 |
|  | PCMCIA card (TSX SCP114) | Cable equipped with a special connector and stripped at the other end | TSX SCP CM 4030 |
| TSX Premium PLC | TSX SCY 11601 or TSX SCY 21601 module (25-way SUB-D socket) | Cable equipped with a 25-way SUB-D connector and stripped at the other end | TSX SCY CM 6030 |
|  | PCMCIA card (TSX SCP114) | Cable equipped with a special connector and stripped at the other end | TSX SCP CM 4030 |
| Ethernet bridge <br> (174 CEV 300 10) | Screw terminal RS485 | Modbus cable | TSX CSA100 or TSX CSA200 or TSX CSA500 |
| Profibus DP gateway (LA9P307) | RJ45 RS485 | 3 m cable equipped with an RJ45 connector and stripped at the other end | VW3 A8 306 D30 |
| Fipio (LUFP1) or Profibus DP (LUFP7) or DeviceNet (LUFP9) gateway | RJ45 RS485 | 3 m cable equipped with an RJ45 connector and stripped at the other end | VW3 A8 306 D30 |
| Serial port PC | Male 9-way SUB-D RS232 serial port PC | RS232/RS485 converter and Modbus cable | TSX SCA 72 and TSX CSA100 or TSX CSA200 or TSX CSA500 |

## 6．Configuration

## 6．1．Communication parameters

Configure the following parameters in the［1．9－COMMUNICATION］（ $\subset \square \sqcap-$ ）menu，［Uni－Telway／Modbus］（Uヒ L－）submenu：
［Protocol］（ $P r \square$ ），［Bit rate］（ $b d r$ ）and［Format］（ $F \square r$ ）．
These parameters can only be modified when the motor is stopped．Modifications can only be taken into account by the drive following a power break．

| Parameter | Possible values | Terminal display | Default value |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & {\left[\begin{array}{l} {[\text { Protocol] }]} \\ \left.\left(\begin{array}{l} r \end{array}\right]\right) \end{array}\right]} \end{aligned}$ | Uni－Telway Modbus／RTU Modbus／ASCII | ［Unitelway］（UヒE） ［Modbus RTU］（ $r \in U$ ） ［Modbus ASCII］（ （ 5 ［） | ［Unitelway］（ $\\|$ E E） |
| $\begin{aligned} & \hline \text { [Address] } \\ & \left(\begin{array}{ll} A & d \\ \hline \end{array}\right) \end{aligned}$ | 0 to 247 | ［0］（ 0 ）to［247］（ 24 7） | Value taken from the address switches |
| $\begin{aligned} & {\left[\begin{array}{l} {[B i t ~ r a t e]} \\ \left(\begin{array}{ll} ( & d \end{array}\right) \end{array}\right)} \end{aligned}$ | $\begin{aligned} & 4800 \mathrm{bps} \\ & 9600 \mathrm{bps} \\ & 19,200 \mathrm{bps} \end{aligned}$ |  | ［19．2 Kbps］（ 19 己） |
| ［Format］ （ $F \square \boldsymbol{r}$ ） | In RTU mode only： 8 data bits，odd parity， 1 stop bit 8 data bits，even parity， 1 stop bit 8 data bits，no parity， 1 stop bit 8 data bits，no parity， 2 stop bits <br> In RTU and ASCII modes： <br> 7 data bits，odd parity， 1 stop bit 7 data bits，even parity， 1 stop bit 7 data bits，odd parity， 2 stop bits 7 data bits，even parity， 2 stop bits |  | ［8－O－1］（ 8 口 1 ） |

## 6. Configuration

## 6. 2. Control - Command

Numerous configurations are possible. For more information, refer to the Programming Manual and the Parameters Manual. The following configurations are just some of the possibilities available.

## ■ Control via Modbus in I/O profile

The command and reference come from Modbus.
The command is in I/O profile.
Configure the following parameters:

| Parameter | Value | Comment |
| :--- | :--- | :--- |
| Profile | I/O profile | The run command is simply obtained by bit 0 of the control word. |
| Reference 1 configuration | Network card | The reference comes from Modbus. |
| Command 1 configuration | Network card | The command comes from Modbus. |

Configuration via the graphic display terminal or the integrated display terminal:

| Menu | Parameter | Value |
| :---: | :---: | :---: |
| [1.6-COMMAND] ([tL - ) | [Profile] (L H [ F ) | [I/O profile] ( ID) |
|  | [Ref. 1 channel] ( $F_{r}$ I I) | [Com. card] ( $n E t$ ) |
|  | [Cmd channel 1] ( $\left[\begin{array}{ll}\text { d }\end{array}\right)$ | [Com. card] ( $n E t$ ) |

## ■ Control via Modbus or the terminals in I/O profile

Both the command and reference come from Modbus or the terminals. Input LI5 at the terminals is used to switch between Modbus and the terminals.
The command is in I/O profile.
Configure the following parameters:

| Parameter | Value | Comment |
| :--- | :--- | :--- |
| Profile | I/O profile | The run command is simply obtained by bit 0 of the control word. |
| Reference 1 configuration | Network card | Reference 1 comes from Modbus. |
| Reference 1B configuration | Analog input 1 on the terminals | Reference 1B comes from input AI1 on the terminals. |
| Reference switching | Input LI5 | Input LI5 switches the reference (1 $\leftrightarrow 1 B)$. |
| Command 1 configuration | Network card | Command 1 comes from Modbus. |
| Command 2 configuration | Terminals | Command 2 comes from the terminals. |
| Command switching | Input LI5 | Input LI5 switches the command. |

Note: Reference $1 B$ is directly connected to the drive reference limit. If switching is performed, the functions that affect the reference (summing, PID, etc) are inhibited.

Configuration via the graphic display terminal or the integrated display terminal:

| Menu | Parameter | Value |
| :---: | :---: | :---: |
| [1.6-COMMAND] ([tL-) | [Profile] ( CH [ F) | [//O profile] ( I I ) |
|  | [Ref. 1 channel] ( $\mathrm{Fr}_{\sim} \mathrm{I}$ ) | [Com. card] ( $n E t$ ) |
|  | [Cmd channel 1] ([dI) | [Com. card] ( $n E t$ ) |
|  | [Cmd channel 2] ( ᄃ d ᄅ) | [Terminals] ( E ¢ r ) |
|  | [Cmd switching] ( [ 5 5) | [LI5] (L I 5) |
| $\begin{aligned} & \text { [1.7 APPLICATION FUNCT.] }\left(F U_{n}-\right) \\ & \text { [REFERENCE SWITCH.] } \end{aligned}$ | [Ref.1B channel] ( r $_{\text {r I }}$ ) | [Ref. Al1] ( 月 I I) $^{\text {l }}$ |
|  | [Ref 1B switching] (r ¢ b) | [LI5] (L I5) |

## 6. Configuration

■ Control via Modbus in Drivecom profile
The command and reference come from Modbus.
The command is in Drivecom profile.

Configure the following parameters:

| Parameter | Value | Comment |
| :--- | :--- | :--- |
| Profile | Drivecom profile not <br> separate | The run commands are in Drivecom profile, the command and the reference <br> come from the same channel. |
| Reference 1 configuration | Network card | The command comes from Modbus. |

Configuration via the graphic display terminal or the integrated display terminal:

| Menu | Parameter | Value |
| :---: | :---: | :---: |
| [1.6-COMMAND] ([tL-) | [Profile] ( H [ F ) | [Not separ.] ( 5 I П) (factory setting) |
|  | [Ref. 1] $\left(F_{r} \mathrm{l}\right)$ | [Com. card] ( $n E t$ ) |

## ■ Control via Modbus or the terminals in Drivecom profile

Both the command and reference come from Modbus or the terminals. Input LI5 at the terminals is used to switch between Modbus and the terminals.
The command is in Drivecom profile.

Configure the following parameters:

| Parameter | Value | Comment |
| :--- | :--- | :--- |
| Profile | Drivecom profile not separate | The run commands follow the Drivecom profile, and the command and <br> reference come from the same channel. |
| Reference 1 configuration | Network card | Reference 1 comes from Modbus. |
| Reference 2 configuration | Analog input 1 on the terminals | Reference 2 comes from input AI1 on the terminals. |
| Reference switching | Input LI5 | Input LI5 switches the reference (1 $\leftrightarrow 2)$ and the command. |

Caution: Reference 2 is directly connected to the drive reference limit. If switching is performed, the functions that affect the reference (summing, PID, etc) are inhibited.

Configuration via the graphic display terminal or the integrated display terminal:

| Menu | Parameter | Value |
| :---: | :---: | :---: |
| [1.6-COMMAND] ([ L L - ) | [Profile] ( H [ F ) | [Not separ.] (5 17 ) |
|  | [Ref.1 channel] ( $F_{r} \mathrm{l}$ ) | [Com. card] ( $n E t$ ) |
|  | [Ref. 2 channel] ( $F$ r 2 ) | [Ref. Al1] ( 月 \\| I) $^{\text {l }}$ |
|  | [Ref. 2 switching] ( $\quad$ F [ ) | [LI5] (L I5) |

## 6. Configuration

- Control in Drivecom profile via Modbus and reference switching at the terminals

The command comes from Modbus.
The command comes either from Modbus or from the terminals. Input LI5 at the terminals is used to switch the reference between Modbus and the terminals.
The command is in Drivecom profile.

Configure the following parameters:

| Parameter | Value | Comment |
| :--- | :--- | :--- |
| Profile | Separate Drivecom profile | The run commands follow the Drivecom profile, and the command and <br> reference can come from different channels. |
| Reference 1 configuration | Network card | Reference 1 comes from Modbus. |
| Reference 1B configuration | Analog input 1 on the terminals | Reference 1B comes from input AI1 on the terminals. |
| Reference switching | Input LI5 | Input LI5 switches the reference (1 $\leftrightarrow 1 \mathrm{~B})$. |
| Command 1 configuration | Network card | Command 1 comes from Modbus. |
| Command switching | Channel 1 | Channel 1 is the command channel. |

Note: Reference 1B is directly connected to the drive reference limit. If switching is performed, the functions that affect the reference (summing, PID, etc) are inhibited.

Configuration via the graphic display terminal or the integrated display terminal:

| Menu | Parameter | Value |
| :---: | :---: | :---: |
| [1.6-COMMAND] ([ L L - ) | [Profile] ( H L F ) $^{\text {a }}$ | [Separate] ( 5 E P) |
|  | [Ref.1 channel] ( $\mathrm{Fr}^{\text {l }}$ ) | [Com. card] ( $n E t$ ) |
|  | [Cmd channel 1] ([d) | [Com. card] ( $n E t$ ) |
|  | [Cmd switching] ( [ [ 5) | [ch1 active] ([ d I) |
| $\begin{aligned} & \text { [1.7 APPLICATION FUNCT.] }\left(F \\|_{n}-\right) \\ & \text { [REFERENCE SWITCH.] } \end{aligned}$ | [Ref.1B channel] ( r $_{\text {r Ib) }}$ | [Ref. Al1] ( ¢ / I) $^{\text {l }}$ |
|  | [Ref 1B switching] (r ¢ b) | [LI5] (L I 5) |

## 6．Configuration

## 6．3．Communication scanner

The communication scanner enables all the application－relevant parameters to be grouped in 2 consecutive word tables so that single read and write operations may be performed．It is even possible to perform a single transaction using the＂Read／Write Multiple Registers＂（23＝ 16\＃17）function．

The 8 output variables are assigned using the 8 ［Scan．Out address］（ $\square$［ 月 ）parameters．They are configured using the graphic display terminal via the［1．9－COMMUNICATION］（［ロП－）menu，［COM．SCANNER OUTPUT］（ロ［5－）submenu．

The 8 input variables are assigned using the 8 ［Scan．IN• address］（ $n$ П Н॰）parameters．They are configured using the graphic display terminal via the［1．9－COMMUNICATION］（ $\subset \square \Pi-)$ menu，［COM．SCANNER INPUT］（ I［ 5－）submenu．

Enter the logic address of the parameter（see the Parameters Manual）．
 drive．

These 16 assignment parameters are described in the tables below：

| Configuration parameter name | Default assignment of the output variable |
| :---: | :---: |
| ［Scan．Out1 address］（n［ 月 I） | Control word（CMd） |
| ［Scan．Out2 address］（ $\sim$［ 己 ） | Speed reference（LFrd） |
| ［Scan．Out3 address］（ $\sim$［ 月 ヨ） | Not used |
| ［Scan．Out4 address］（ $\sim$［ 月 4） | Not used |
| ［Scan．Out5 address］（n［ 月 5） | Not used |
| ［Scan．Out6 address］（ $\sim$［ 月 Б） | Not used |
| ［Scan．Out7 address］（ $n$［ 月 7） | Not used |
| ［Scan．Out8 address］（n［ 月 日） | Not used |


| Configuration parameter name | Default assignment of the input variable |
| :---: | :---: |
| ［Scan．IN1 address］（пП | Status word（EtA） |
| ［Scan．IN2 address］（пП こ こ） | Output speed（rFrd） |
| ［Scan．IN3 address］（пПН ヨ） | Not used |
| ［Scan．IN4 address］（пПН 4） | Not used |
| ［Scan．IN5 address］（пПН 5） | Not used |
| ［Scan．IN6 address］（пП Б ） | Not used |
| ［Scan．IN7 address］（пПН 7） | Not used |
| ［Scan．IN8 address］（пПН日） | Not used |

## Example of configuration via the graphic display terminal：

| RDY NET | $+0.00 \mathrm{~Hz}$ | OA |
| :---: | :---: | :---: |
| COM．SCANNER INPUT |  |  |
| Scan．IN1 address |  | 3201 |
| Scan．IN2 address |  | 8604 |
| Scan．IN3 address |  | 0 |
| Scan．IN4 address |  | 0 |
| Scan．IN5 address |  | 0 |
| Code | Quick | $\checkmark$ |
| Scan．IN6 address |  | 0 |
| Scan．IN7 address |  | 0 |
| Scan．IN8 address |  | 0 |



## Note：

Any modification to parameters［Scan．Out address］（ $n$［ H ）or［Scan．INe address］（ $n$ П $\boldsymbol{n} \bullet$ ）must be made with the motor stopped．The master PLC program should be updated to take account of this modification．

## 6. Configuration

## 6. 4. Communication faults

A Modbus fault is triggered if the Modbus card does not receive any Modbus requests at its address within a predefined time period (time out). All Modbus request types are taken into account (read, write, etc.). The time out is fixed at 10 s (non-modifiable).
The response of the drive in the event of a Modbus communication fault can be configured.

Configuration can be performed using the graphic display terminal or integrated display terminal using the [Network fault mgt] ( $[L L$ ) parameter in the [1.8 FAULT MANAGEMENT] ( $F L t-$ ) menu, [COM. FAULT MANAGEMENT] ([ L L - ) submenu.

| RDY | NET | $+0.00 \mathrm{~Hz}$ | OA |
| :---: | :---: | :---: | :---: |
| COM. FAULT MANAGEMENT |  |  |  |
| Network fault mgt CANopen fault mgt Modbus fault mgt |  | Fre | wheel |
|  |  | Fre | wheel |
|  |  | Fre | wheel |
|  |  | Quic |  |

The values of the [Network fault mgt] ( $[L L$ ) parameter, which trigger a [Com. network] ( $[\cap F)$ drive fault, are:

| Value | Meaning |
| :---: | :---: |
| [Freewheel] ( Ч E 5) | Freewheel stop (factory setting) |
| [Ramp stop] (r П P) | Stop on ramp |
| [Fast stop] (F5t) | Fast stop |
| [DC injection] ( [ $^{\text {L }}$ ) | DC injection stop |

The values of the [Network fault mgt ( $[L L$ ) parameter, which do not trigger a drive fault, are:

| Value | Meaning |
| :--- | :--- |
| $[$ Ignore ( $n \square$ ) | Fault ignored |
| [Per STT] (5 t $)$ | Stop according to configuration of [Type of stop] (5t $).$ |
| [fallback spd] (LFF) | Switch to fallback speed, maintained as long as the fault is present and the run command is not disabled. |
| [Spd maint.] (r L 5) | The drive maintains the speed at the time the fault occurred, as long as the fault persists and the run <br> command has not been removed. |

The fallback speed can be configured via the [Fallback speed] ( $L$ F F) parameter in the [1.8 - FAULT MANAGEMENT] (F L $t$-) menu.

## 6. Configuration

## 6. 5. Monitored parameters

It is possible to select up to 4 parameters to display their values in the [1.2-MONITORING] menu ([COMMUNICATION MAP] submenu) on the graphic display terminal.

The selection is made via the [6-MONITOR CONFIG.] menu ([6.3-CONFIG. COMM. MAP] submenu).

Each parameter [Address 1 select] ... [Address 4 select] can be used to choose the logic address of the parameter. Select an address of zero to disable the function.

In the example given here, the monitored words are:

- Parameter 1 = Motor current (LCr): logic address 3204 signed decimal format
- Parameter 2 = Motor torque (Otr): logic address 3205; signed decimal format
- Parameter 3 = Last fault occurred (LFt): logic address 7121; hexadecimal format
- Disabled parameter: address 0; default format: hexadecimal format


One of the three display formats below can be assigned to each monitored word:

| Format | Range | Terminal display |
| :--- | :--- | :--- |
| Hexadecimal | $0000 \ldots$ FFFF | [Hex] |
| Signed decimal | $-32,767 \ldots 32,767$ | [Signed] |
| Unsigned decimal | $0 \ldots 65,535$ | [Unsigned] |

## 7. Diagnostics

## 7. 1. Checking the address

On the graphic display terminal or integrated display terminal, check the address that has been coded on the switches using the [Address]

This parameter cannot be modified.

## 7. 2. LEDs

The Modbus card has 2 LEDs, RUN and ERR, which are visible through the drive cover.

| Green RUN LED | $\begin{gathered} \text { Red ERR } \\ \text { LED } \end{gathered}$ | Meaning | Corrective action |
| :---: | :---: | :---: | :---: |
| Off | Off | Drive not operating or turned off | Check the power supply. |
| On | On | Drive starting |  |
| On | Off | Normal operation |  |
| Off | On | Communication fault on the bus | - Check the environment (electromagnetic compatibility). <br> - Check the wiring. <br> - Check that the master is communicating within the time out period ( $=10 \mathrm{~s}$ ). |
| Off | Flashing | Error on character received | - Check the environment (electromagnetic compatibility). <br> - Check the communication parameter configuration (protocol, speed, format). <br> - Do not forget that the communication parameter configuration is only taken into account by the drive following a power break. <br> - Check that the slave address is unique. |
| Flashing | Off | Card fault [internal com. link] (ILF) | - Check the environment (electromagnetic compatibility). <br> - Check the card/drive connection. <br> - Check that only one communication card has been installed. <br> - Check that no more than two option cards have been installed. <br> - Replace the communication card. <br> - Inspect or repair the drive. |

## 7. Diagnostics

## 7. 3. Control - Command

On the graphic display terminal only, the [1.2-MONITORING] menu ([COMMUNICATION MAP] submenu) can be used to display controlsignal diagnostic information between the drive and the master:


## 7. Diagnostics

## 7. 4. Communication scanner

On the graphic display terminal, in the [1.2-MONITORING] ( $5 \cup P-$ ) menu ([COMMUNICATION MAP] ( $[\sqcap \Pi-$ ) submenu):

- The [COM. SCANNER INPUT MAP] ( $/ 5$ R - ) submenu is used to display the value of the 8 communication scanner input variables [Com Scan In • val.] (NM•).
- The [COM SCAN OUTPUT MAP] ( C 5 $\mathrm{H}^{-}$) submenu is used to display the value of the 8 communication scanner output variables [Com Scan Oute val.] (NCe).

| Input variable | Scanner parameter | Output variable | Scanner parameter |
| :---: | :---: | :---: | :---: |
| No. 1 | [Com Scan In1 val.] (NM1) | No. 1 | [Com Scan Out1 val.] (NC1) |
| No. 2 | [Com Scan In2 val.] (NM2) | No. 2 | [Com Scan Out2 val.] (NC2) |
| No. 3 | [Com Scan In3 val.] (NM3) | No. 3 | [Com Scan Out3 val.] (NC3) |
| No. 4 | [Com Scan In4 val.] (NM4) | No. 4 | [Com Scan Out4 val.] (NC4) |
| No. 5 | [Com Scan In5 val.] (NM5) | No. 5 | [Com Scan Out5 val.] (NC5) |
| No. 6 | [Com Scan In6 val.] (NM6) | No. 6 | [Com Scan Out6 val.] (NC6) |
| No. 7 | [Com Scan In7 val.] (NM7) | No. 7 | [Com Scan Out7 val.] (NC7) |
| No. 8 | [Com Scan In8 val.] (NM8) | No. 8 | [Com Scan Out8 val.] (NC8) |

Configuration of these variables is described in the "Configuration" section.

## Example of communication scanner display on the graphic display terminal:



In this example, only the first two variables have been configured (default assignment).

| [Com Scan In1 val.] $=[34343]$ | Status word $=34359=16 \# 8637$ | $\rightarrow$ | Drivecom "Operation enabled" state, <br> reverse operation, speed reached |
| :--- | :--- | :--- | :--- |
| $[$ Com Scan In2 val.] $=[600]$ | Output speed $=600$ | $\rightarrow$ | 600 rpm |
| $[$ Com Scan Out1 val. $]=[15]$ | Control word $=15=16 \# 000 \mathrm{~F}$ | $\rightarrow$ | "Enable operation" (Run) command |
| $[$ Com Scan Out2 val.] $=[598]$ | Speed reference $=600$ | $\rightarrow$ | 598 rpm |

## 7. Diagnostics

## 7. 5. Communication fault

Modbus communication faults are indicated by the red ERR LED on the Modbus card.
In the factory configuration, a communication fault will trigger a resettable [Com. network] ( $[n F$ ) drive fault and initiate a freewheel stop.
It is possible to change the response of the drive in the event of a Modbus communication fault (see the Configuration section).

- [Com. network] ( $[\cap F)$ drive fault (freewheel stop, stop on ramp, fast stop or DC injection braking stop)
- No drive fault (stop, maintain, fallback)

The Parameters Manual contains a detailed description of how to manage communication faults (see the "Communication monitoring" section).

- Following initialization (power-up), the drive checks that at least one command or reference parameter has been written for the first time by Modbus.
- Then, if a communication fault occurs on Modbus, the drive will react according to the configuration (fault, maintain, fallback, etc.).


## 7. 6. Card fault

The [internal com. link] (IL F) fault appears when the following serious problems occur:

- Hardware fault on the Modbus card
- Dialog fault between the Modbus card and the drive

The response of the drive in the event of an [internal com. link] ( IL F) fault cannot be configured, and the drive trips with a freewheel stop. This fault cannot be reset.

Two diagnostic parameters can be used to obtain more detailed information about the origin of the [internal com. link] (ILF) fault:

- [Internal link fault 1] ( ILF I) if the fault has occurred on option card no. 1 (installed directly on the drive)
- [Internal link fault 2] ( IL F 2) if the fault has occurred on option card no. 2 (installed on option card no. 1)

The Modbus card can be in position 1 or 2.
The [Internal link fault 1] (ILFI) and [Internal link fault 2] (ILFE) parameters can only be accessed on the graphic display terminal in the [1.10 DIAGNOSTICS] ( (Lt -) menu, [MORE FAULT INFO] ( $~$ F I-) submenu.

| Value | Description of the values of the [Internal link fault 1] (IL F I) and [Internal link fault 2] (IL F ट) parameters |
| :---: | :--- |
| 0 | No fault |
| 1 | Loss of internal communication with the drive |
| 2 | Hardware fault detected |
| 3 | Error in the EEPROM checksum |
| 4 | Faulty EEPROM |
| 5 | Faulty Flash memory |
| 6 | Faulty RAM memory |
| 7 | Faulty NVRAM memory |
| 8 | Faulty analog input |
| 9 | Faulty analog output |
| 10 | Faulty logic input |
| 11 | Faulty logic output |
| 101 | Unknown card |
| 102 | Exchange problem on the drive internal bus |
| 103 | Time out on the drive internal bus (500 ms) |

## 8. Modbus protocol

## 8. 1. Principle

The Modbus protocol is a master-slave protocol.

Only one device can transmit on the line at any one time.
The master manages the exchanges and only it can take the initiative.

It interrogates each of the slaves in succession.
Master


In the event of an error during data exchange, the master repeats the question and declares the interrogated slave absent if no response is received within a given time period.

If a slave does not understand a message, it sends an exception response to the master.
The master may or may not repeat the request.


Direct slave-to-slave communications are not possible.

For slave-to-slave communication, the master's application software must therefore be designed to interrogate one slave and send back data received to the other slave.

Two types of dialog are possible between master and slaves:

- The master sends a request to a slave and waits for it to respond.
- The master sends a request to all slaves without waiting for them to respond (broadcasting principle).

Note: The Modbus server on the "Controller Inside" card cannot be accessed via the Modbus card.

## 8. Modbus protocol

## 8. 2. Modes

## ■ RTU mode

The Modbus RTU frame contains no message header byte, nor end of message bytes. It is defined as follows:


The data is transmitted in binary code.
CRC16: Cyclic redundancy check parameter.
The end of the frame is detected on a silence greater than or equal to 3.5 characters.
The format used for the frames in the rest of this document is RTU mode.

## - ASCII mode

The structure of the Modbus ASCII frame is as follows:

| Header | Slave | Function |  | Data | LRC |  | End |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ":" | address | code |  |  | Hi | Lo | "CR" | "LF" |

Header: By default, ":" = 16\#3A. Two other characters are possible: "CR" = 16\#0D and "LF" = 16\#0A.
LRC: The 2's-complement of the modulo 256 sum (in hexadecimal format) of the frame (excluding the header and end characters) before ASCII coding.

Example: Write a value of 10 to logic address word 9001 (16\#2329) on slave 2
Identical request and response:
In hexadecimal format


In ASCII format

| $:$ | 0 | 2 | 0 | 6 | 2 | 3 | 2 | 9 | 0 | 0 | 0 | A | A | 2 | CR | LF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## 8. Modbus protocol

## 8. 3. Modbus functions available

The following table indicates which Modbus functions are managed by the Altivar 71 and specifies their limits.
The "read" and "write" functions are defined from the point of view of the master.

| Code | Modbus name | Description | Broadcast | Size of data |
| :---: | :--- | :--- | :---: | :---: |
| $3=16 \# 03$ | Read Holding Registers | Read N output words | NO | 63 words, max. |
| $4=16 \# 04$ | Read Input Registers | Read N input words | NO | 63 words, max. |
| $6=16 \# 06$ | Write Single Register | Write one output word | YES |  |
| $8=16 \# 08$ | Diagnostics | Diagnostics | NO |  |
| $11=16 \# 0 B$ | Get Comm Event Counter | Read counter | NO |  |
| $16=16 \# 10$ | Write Multiple Registers | Write N output words | YES | 61 words, max. |
| $23=16 \# 17$ | Read/Write Multiple Registers | Read/write N words | NO | $20 / 20$ words max. |
| $43=16 \# 2 B$ | Read Device Identification | Identification | NO |  |

## 8. 4. Read Holding/Input Registers (3/4)

Functions 3 and 4 access all the drive registers that make no distinction between the "Holding" or "Input" types.
Request:

| Slave no. | 03/04 | No. of first word |  | Number of words |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo | Lo | Hi |
| 1 byte | 1 byte | 2 bytes |  | 2 bytes |  | 2 bytes |  |

Response:

| Slave no. | 03/04 | Number of bytes read | First word value |  | Last word value |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hi | Lo | Hi | Lo | Lo | Hi |
| 1 byte | 1 byte | 1 byte | 2 bytes |  | 2 bytes |  | 2 bytes |  |

Example: Use function 3 to read 4 logic address words 3102 to 3105 (16\#0C1E to 16\#0C21) on slave 2, where:

- $\operatorname{SFr}=$ Switching frequency $=4 \mathrm{kHz}$ (logic address $3102=16 \# 0028$ )
- tFr = Maximum output frequency $=60 \mathrm{~Hz}$ (logic address $3103=16 \# 0258$ )
- HSP = High speed $=50 \mathrm{~Hz}$ (logic address 3104 = 16\#01F4)
- LSP = Low speed $=0$ Hz (logic address $3105=16 \# 0000$ )

Request:

| 02 | 03 | 0C1E | 0004 | 276 C |
| :--- | :--- | :--- | :--- | :--- |

Response:

| 02 | 03 | 08 | 0028 | 0258 | $01 F 4$ | 0000 | $52 \mathrm{B0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Value of: |  |  |  |  |  |  | 3102 |
| Parameter code: | SFr | 3103 | 3104 | 3105 | LSP |  |  |

## 8. Modbus protocol

## 8. 5. Write Single Register (6)

Request and response:

| Slave no. | 06 | Word number |  | Value of word |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo | Lo | Hi |
| 1 byte | 1 byte | 2 bytes |  | 2 bytes |  | 2 bytes |  |

Example: Write value 16\#000D to logic address word 9001 (16\#2329) on slave $2(\mathrm{ACC}=13 \mathrm{~s})$
Request and response:

| 02 | 06 | 2329 | 000 D | 9270 |
| :--- | :--- | :--- | :--- | :--- |

## 8. Modbus protocol

## 8. 6. Diagnostics (8)

Request and response:

| Slave no. | 08 | Sub-code |  | Data |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo | Hi | Lo |
| 1 byte | 1 byte | 2 bytes |  | 2 bytes |  | 2 bytes |  |


| $\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$ | Function | Request data | Response data |
| :---: | :---: | :---: | :---: |
| 00 | Echo <br> This function asks the slave to return the request sent by the master. The size of the data is limited to 2 bytes. | XX YY | XX YY |
| 01 | Reinitialize channel <br> This function is used to reinitialize slave communication and, in particular, to make it exit listen only mode (LOM). | $\begin{gathered} 16 \# 0000 \\ \text { or } \\ 16 \# F F 00 \end{gathered}$ | $\begin{gathered} 16 \# 0000 \\ \text { or } \\ 16 \# F F 00 \end{gathered}$ |
| 03 | Change ASCII delimiter In ASCII mode, messages are delimited by the line feed character ( $\mathrm{LF}=\mathrm{H}^{\prime} \mathrm{OA}$ ). This function is used to change this character. | $\begin{gathered} \text { XX 00 } \\ \text { XX }=\text { new delimiter } \end{gathered}$ | XX 00 |
| 04 | Change to LOM mode <br> This function is used to force a slave to listen only mode (LOM). In this mode, the slave does not handle messages which are addressed to it, nor does it send any responses, except when the channel is reinitialized. | 0000 | 0000 |
| OA | Counter reset <br> This function resets all the counters responsible for monitoring slave exchanges. | 0000 | 0000 |
| OB | Read the number of correct messages on the line without checksum error | 0000 | Value of counter |
| 0C | Read the number of incorrect messages on the line with checksum error | 0000 | Value of counter |
| OD | Read the number of exception responses sent by the slave | 0000 | Value of counter |
| OE | Read the number of messages addressed to the slave excluding broadcast messages regardless of type | 0000 | Value of counter |
| OF | Read the number of broadcast messages on the line regardless of type | 0000 | Value of counter |
| 10 | Read the number of NAK exception responses The value read is always 0 . | 0000 | 0000 |
| 11 | Read the number of slave not ready responses The value read is always 0 . | 0000 | 0000 |
| 12 | Read the number of messages received with character overrun | 0000 | Value of counter |

The counters are unsigned words.

Example: Values $16 \# 31$ and $16 \# 32$ echoed by slave 4
Request and response:

| Slave no. | Code | Subcode |  | $\begin{aligned} & \text { Value of } \\ & 1^{\text {st }} \text { byte } \end{aligned}$ | Value of $2^{\text {nd }}$ byte | $\begin{gathered} \text { CRC } \\ \text { Lo } \end{gathered}$ | CRC Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo |  |  |  |  |
| 04 | 08 | 00 | 00 | 31 | 32 | 74 | 1B |

## 8. Modbus protocol

## 8. 7. Get Comm Event Counter ( $11=16 \# 0 B$ )

Question:

| Slave no. | OB | CRC16 |
| :---: | :---: | :---: |
| 1 byte | 1 byte | 2 bytes |

Response:

| Slave no. | OB | 00 | 00 | Value of counter |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Hi | Lo | Lo | Hi |
| 1 byte | 1 |  | 2 bytes | 2 bytes |  | 2 bytes |  |

## 8. 8. Write Multiple Registers (16 = 16\#10)

Request:

| Slave no. | 10 | No. of first word |  | Number of words |  | Number of bytes | Value of first word |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo |  | Hi | Lo | Lo | Hi |
| 1 byte | byte | 2 bytes |  | 2 bytes |  | 1 byte | 2 bytes |  | 2 bytes |  |

Response:

| Slave no. | 10 | No. of first word |  | Number of words |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Li | Lo | Hi | Lo | Lo | Hi |

Example: Write values 20 and 30 to logic address words 9001 and 9002 on slave 2 (acceleration time $=20 \mathrm{~s}$ and deceleration time $=30 \mathrm{~s}$ ) Request:

| Slave no. | Request code | No. of first word |  | Number of words |  | Number of bytes | Value of first word |  | Value of second word |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo |  | Hi | Lo | Hi | Lo | Lo | Hi |
| 02 | 10 | 23 | 29 | 00 | 02 | 04 | 00 | 14 | 00 | 1E | 73 | A4 |

Response:

| Slave no. | Response code |  | No. of first word |  | Number of words |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo | Lo | Hi |  |
| 02 | 10 | 23 | 29 | 00 | 02 | $9 B$ | $\mathrm{B7}$ |  |

## 8. Modbus protocol

## 8. 9. Read/Write Multiple Registers (23 = 16\#17)

## Request:



Response:


Example: This example combines the two examples for functions 3 and 16 . With function 23 , the line is less busy than with these two functions. However, the number of words that can be read and written is restricted.

- Write the values 20 (16\#14) and 30 (16\#1E) respectively to the 2 logic address words 9001 and 9002 on slave 2.
- Read the 4 logic address words 3102 to 3105 on the same slave (values read $=16 \# 0028,16 \# 0258,16 \# 01 F 4$, and 16\#0000).


## Request:

| Slave no. | Request code | No. of $1^{\text {st }}$ word to be read |  | No. of words to be read |  | No. of $1^{\text {st }}$ word to be written |  | No. of words to be written |  | --- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo | Hi | Lo | Hi | Lo | --- |
| 02 | 17 | OC | 1E | 00 | 04 | 23 | 29 | 00 | 02 | --- |


| --- | No. of bytes to be written | Value of $1^{\text {st }}$ word to be written |  | Value of $2^{\text {nd }}$ word to be written |  | CRC | CRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Hi | Lo | Hi | Lo | Lo | Hi |  |
| --- | 00 | 14 | 00 | 1 E | D 2 | F 5 |  |

Response:

| Slave no. | Response code | No. of bytes | Value of $1^{\text {st }}$ word read |  | Value of $2^{\text {nd }}$ word read |  | Value of $3^{\text {rd }}$ word read |  | Value of $4^{\text {th }}$ word read |  | CRC | CRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hi | Lo | Hi | Lo | Hi | Lo | Hi | Lo | Lo | Hi |
| 02 | 17 | 08 | 00 | 28 | 02 | 58 | 01 | F4 | 00 | 00 | 12 | F0 |

## 8. Modbus protocol

## 8. 10. Read Device Identification (43 = 16\#2B)

## Request:

| Slave no. | 2 B | Type of MEI <br> OE | ReadDeviceld <br> 01 | Object Id <br> 00 | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 byte | 2 bytes |  |

Response:


The total response size given in this example equals 55 bytes.
The response contains the following four objects:

- Object no. 1: Manufacturer name (always "Schneider-Electric", i.e., 18 bytes).
- Object no. 2: Device catalog number (ASCII string; for example: "ATV71HU15M3", i.e., 11 bytes).

The length of this object varies according to drive type. Use the "Length of object no. 2 " field to determine the length.

- Object no. 3: Device version, in "MMmm" format where "MM" represents the determinant and "mm" the subdeterminant (4-byte ASCII string; for example: "0201" for version 2.1).
- Object no. 4: Device name (ASCII string; for example: "MACHINE 4", i.e., 9 bytes).

The length of this object varies according to the device name assigned to the drive (the latter being configured by the user): [7. DISPLAY CONFIG.] menu, [7.1 USER PARAMETERS] submenu, [DEVICE NAME] parameter. This menu can only be accessed in Expert mode.
Maximum size 16 bytes.

## 8. Modbus protocol

Negative response specifically related to the identification function:

| Slave no. | $\begin{gathered} 2 B+80 \\ A B \end{gathered}$ | Type of MEI 0E | Error code 00 to 02 | CRC16 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Lo | Hi |  |
| 1 byte |  |
| Error code: | 16\#00 = | No error |  |  |  |  |
|  | 16\#01 = | The "Request request is inco | $16 \# 2 B)$, the | of MEI" | E) or th | "ReadDeviceld" (16\#01) contained in the |
|  | 16\#02 = | The "Object Id | ) contained | quest is | rect. |  |

## Example of positive response:

- Address $=2$
- Manufacturer name = "Schneider-Electric"
- Device name = "ATV71HU15M3"
- Device version = "0201"
- Device name = "MACHINE 4"

Request:

| Slave no. | Request code | Type of MEI | ReadDeviceld | Object Id | CRC <br> Lo | CRC <br> Hi |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02 | 2B | 0 E | 01 | 00 | 34 | 77 |

Response:

| Slave no. | Response <br> code | Type of <br> MEI | ReadDeviceld | Degree of <br> conformity | No. of additional <br> frames | Next object Id | Object no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02 | 2B | 0E | 01 | 02 | 00 | 00 | 04 |



| Id of object no. 2 | Length of object no. 2 | Value of object no. 2 |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 'A' | 'T' | 'V' | '7' | '1' | 'H' | 'U' | '1' | '5' | 'M' | '3' |
| 01 | OB | 41 | 54 | 56 | 37 | 31 | 48 | 55 | 31 | 35 | 4D | 33 |


| --- | Id of |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| object no. | Length of |  |  |  |  |
| object no. 3 | Value of object no. |  |  |  |  |
| '0' |  |  |  |  |  |
|  |  |  | '2' | '0' | '1' |
| 02 | 04 | 30 | 32 | 30 | 31 |



## 8．Modbus protocol

## 8．11．Communication scanner

The communication scanner can be used to enhance application performance．The drive automatically copies non－contiguous parameters to an input table and an output table．Thus，the copy of several non－contiguous parameters can be read or written in a single request（an operation which would normally have required several Modbus requests）．

The input table and the output table each contain 8 variables．

| Output variables | Logic address | Default assignment |
| :---: | :---: | :---: |
| ［Com Scan Out1 val．］（n［ I） | 12761 ＝16\＃31D9 | Control word（CMd） |
| ［Com Scan Out2 val．］（ $n$［ 己） | 12762 ＝16\＃31DA | Speed reference（LFrd） |
| ［Com Scan Out3 val．］（ $n$［ ヨ） | 12763 ＝16\＃31DB | Not used |
| ［Com Scan Out4 val．］（ $n$［4） | 12764 ＝16\＃31DC | Not used |
| ［Com Scan Out5 val．］（ $n$［5） | 12765 ＝16\＃31DD | Not used |
| ［Com Scan Out6 val．］（ $n$［ 5 ） | 12766 ＝16\＃31DE | Not used |
| ［Com Scan Out7 val．］（ $n$［ 7） | 12767 ＝16\＃31DF | Not used |
| ［Com Scan Out8 val．］（nL日） | 12768 ＝16\＃31E0 | Not used |


| Input variables | Logic address | Default assignment |
| :---: | :---: | :---: |
| ［Com Scan In1 val．］（пП I） | 12741 ＝16\＃31C5 | Status word（EtA） |
| ［Com Scan In2 val．］（пПこ） | 12742 ＝16\＃31C6 | Output speed（rFrd） |
| ［Com Scan In3 val．］（ $n \square \exists$ ） | 12743 ＝16\＃31C7 | Not used |
| ［Com Scan In4 val．］（ $п 74$ ） | 12744 ＝16\＃31C8 | Not used |
| ［Com Scan In5 val．］（nП5） | 12745 ＝16\＃31C9 | Not used |
| ［Com Scan In6 val．］（пПБ） | 12746 ＝16\＃31CA | Not used |
| ［Com Scan In7 val．］（пП 7） | 12747 ＝16\＃31CB | Not used |
| ［Com Scan In8 val．］（пП日） | 12748 ＝16\＃31CC | Not used |

The values of these communication scanner variables can be displayed on the graphic display terminal using the ［1．2－MONITORING］menu，［COMMUNICATION MAP］（ $Г \square \Pi$ ）submenu（see section＂7．Diagnostics－ 7.4 Communication scanner＂）．

These parameters can be accessed via all the read and write requests supported by the drive．
There is a marked improvement in performance for the following functions：

| Code | Modbus name | Description | Size of data |
| :---: | :--- | :--- | :--- |
| $3=16 \# 03$ | Read Holding Registers | Read N output words | 63 words，max． |
| $4=16 \# 04$ | Read Input Registers | Read N input words | 63 words，max． |
| $16=16 \# 10$ | Write Multiple Registers | Write N output words | 61 words，max． |
| $23=16 \# 17$ | Read／Write Multiple Registers | Read／write N words | $20 / 20$ words max． |
| $43=16 \# 2 B$ | Read Device Identification | Identification |  |

## 8．Modbus protocol

The link between the drive parameters and the communication scanner variables can be made：
－Via the display terminal（see section＂6．Configuration－6．2 Communication scanner＂）
－Via Modbus：Before starting the application，the PLC must first write the address tables described below．

| Output variable address | Logic address | Default value |
| :---: | :---: | :---: |
| ［Scan．Out1 address］（n［ H I） | 12721 ＝16\＃31B1 | 8501 ＝16\＃2135 |
| ［Scan．Out2 address］（n［ 月 こ） | 12722 ＝16\＃31B2 | 8602 ＝16\＃219A |
| ［Scan．Out3 address］（n［ 月 ヨ） | 12723 ＝16\＃31B3 | 0 |
| ［Scan．Out4 address］（n［ 月 4） | 12724 ＝16\＃31B4 | 0 |
| ［Scan．Out5 address］（n［ 月 5） | 12725 ＝16\＃31B5 | 0 |
| ［Scan．Out6 address］（n［ 月 Б） | $12726=16 \# 31 \mathrm{B6}$ | 0 |
| ［Scan．Out7 address］（n［ 月 7） | 12727 ＝16\＃31B7 | 0 |
| ［Scan．Out8 address］（n［ 月 日） | 12728 ＝16\＃31B8 | 0 |


| Input variable address | Logic address | Default value |
| :---: | :---: | :---: |
| ［Scan．IN1 address］（пПН I） | 12701 ＝16\＃319D | 3201 ＝16\＃0C8B |
| ［Scan．IN2 address］（пПН己） | 12702 ＝16\＃319E | 8604 ＝16\＃219C |
| ［Scan．IN3 address］（пПН ヨ） | 12703 ＝16\＃319F | 0 |
| ［Scan．IN4 address］（пПН 4） | 12704 ＝16\＃31A0 | 0 |
| ［Scan．IN5 address］（пП ${ }^{\text {П 5 ）}}$ | 12705 ＝16\＃31A1 | 0 |
| ［Scan．IN6 address］（пПНБ） | $12706=16 \# 31 \mathrm{~A} 2$ | 0 |
| ［Scan．IN7 address］（пПН 7） | 12707 ＝16\＃31A3 | 0 |
| ［Scan．IN8 address］（ п П В В） | 12708 ＝16\＃31A4 | 0 |

## Example

－Use of the＂Read／Write Multiple Registers＂function（request code： 23 ＝16\＃17）
－Transmission of the request to a drive located at address 20 （16\＃14）
－Reading all 8 scanner input variables
－List of source parameters：

| No． | Parameter | Logic <br> address | Read <br> value |
| :---: | :--- | :---: | :---: |
| 1 | Status word（EtA） | 3201 | $16 \# 0007$ |
| 2 | Output speed（rFrd） | 8604 | $16 \# 1388$ |
| 3 | Motor current（LCr） | 3204 | $16 \# 0064$ |
| 4 | Output torque（Otr） | 3205 | $16 \# 0045$ |


| No． | Parameter | Logic <br> address | Read <br> value |
| :---: | :--- | :---: | :---: |
| 5 | Power section AC supply voltage <br> （ULn） | 3207 | $16 \# 00 \mathrm{F0}$ |
| 6 | Drive thermal state（tHd） | 3209 | $16 \# 0065$ |
| 7 | Motor thermal state（tHr） | 9630 | $16 \# 0032$ |
| 8 | Altivar fault code（LFt） | 7121 | $16 \# 0000$ |

－Writing the first 6 scanner output variables
－List of target parameters：

| No． | Parameter | Logic <br> address | Value to <br> be written |
| :---: | :--- | :---: | :---: |
| 1 | Control word（CMd） | 8501 | $16 \# 000 F$ |
| 2 | Speed reference（LFrd） | 8602 | $16 \# 1388$ |
| 3 | High speed（HSP） | 3104 | $16 \# 1 F 40$ |
| 4 | Low speed（LSP）： | 3105 | $16 \# 01 F 4$ |


| No． | Parameter | Logic <br> address | Value to <br> be written |
| :---: | :--- | :---: | :---: |
| 5 | ［Acceleration］（ACC） | 9001 | $16 \# 04 B 0$ |
| 6 | ［Deceleration］（dEC） | 9002 | $16 \# 0258$ |
| 7 | - | 0 | $16 \# 0000$ |
| 8 | - | 0 | $16 \# 0000$ |

## 8．Modbus protocol

The communication scanner is configured via the display terminal as follows：

## Output（control）：

| Configuration parameter | Value | Parameter assigned |
| :---: | :---: | :---: |
| ［Scan．Out1 address］（n［ A I） | 8501 | Control word（CMd） |
| ［Scan．Out2 address］（n［ 月 こ） | 8602 | Speed reference（LFrd） |
| ［Scan．Out3 address］（ $\sim$［ 月 ヨ） | 3104 | ［High speed］（HSP） |
| ［Scan．Out4 address］（n［ 月 4） | 3105 | ［Low speed］（LSP）： |
| ［Scan．Out5 address］（n［ 月 5） | 9001 | ［Acceleration］（ACC） |
| ［Scan．Out6 address］（n［ 月 Б） | 9002 | ［Deceleration］（dEC） |
| ［Scan．Out7 address］（n［ A 7） | 0 | Not used |
| ［Scan．Out8 address］（ $n$［ 月 日） | 0 | Not used |

Input（monitoring）：

| Configuration parameter | Value | Parameter assigned |
| :---: | :---: | :---: |
| ［Scan．IN1 address］（пПН I） | 3201 | Status word（EtA） |
| ［Scan．IN2 address］（пПН 己） | 8604 | Output speed（rFrd） |
| ［Scan．IN3 address］（пПН ヨ） | 3204 | ［Motor current］（LCr） |
| ［Scan．IN4 address］（пПН Ч） | 3205 | ［Output torque］（Otr） |
| ［Scan．IN5 address］（пПН 5） | 3207 | ［Power section AC supply voltage］（ULn） |
| ［Scan．IN6 address］（пПНБ） | 3209 | ［Drive thermal state］（tHd） |
| ［Scan．IN7 address］（пПН 7） | 9630 | ［Motor thermal state］（tHr） |
| ［Scan．IN8 address］（пП ${ }^{\text {П В }}$ ） | 7121 | Altivar fault code（LFt） |

Request：


| －－－ | Value of $1^{\text {st }}$ word to be written |  | Value of $2^{\text {nd }}$ word to be written |  | Value of $3^{\text {rd }}$ word to be written |  | Value of $4^{\text {th }}$ word to be written |  | Value of $5^{\text {th }}$ word to be written |  | Value of $6^{\text {th }}$ word to be written |  | CRC | CRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －－－ | Hi | Lo | Lo | Hi |
| －－－ | 00 | OF | 13 | 88 | 1F | 40 | 01 | F4 | 04 | B0 | 02 | 58 | 56 | 3D |

Response：

| Slave no． | Response code | No．of bytes read | Value of $1^{\text {st }}$ word read |  | Value of $2^{\text {nd }}$ word read |  | Value of $3^{\text {rd }}$ word read |  | Value of $4^{\text {th }}$ word read |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hi | Lo | Hi | Lo | Hi | Lo | Hi | Lo |
| 14 | 17 | 10 | 00 | 07 | 13 | 88 | 00 | 64 | 00 | 45 |


| －－－ | Value of $5^{\text {th }}$ word read |  | Value of $6^{\text {th }}$ word read |  | Value of $7^{\text {th }}$ word read |  | Value of $8^{\text {th }}$ word read |  | CRC | CRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| －－－ | Hi | Lo | Hi | Lo | Hi | Lo | Hi | Lo | Lo | Hi |
| －－－ | 00 | F0 | 00 | 65 | 00 | 32 | 00 | 00 | E4 | 90 |

## 8. Modbus protocol

## 8. 12. Exception responses

An exception response is returned by a slave when it is unable to perform the request which is addressed to it.
Format of an exception response:

| Slave <br> no. | Response <br> code | Error <br> code | CRC16 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Lo | Hi |  |  |  |  |  |  |  |
| 1 byte |  |  |  |  |  |  |  | 1 byte |

Response request code $+\mathrm{H}^{\prime} 80$.
code:
Error code: $1=$ The function requested is not recognized by the slave.
$2=$ The addresses indicated in the request do not exist in the slave.
$3=$ The values indicated in the request are not permitted on the slave.
$4=$ The slave has started to execute the request but cannot continue to process it completely.
$6=$ The requested write operation has been refused because the drive is in "Forced local" mode.
$7=$ The requested write operation has been refused because the motor is running (configuration parameters).

Example: Writing the value 1 to the status word (EtA) = logic address 3201 (which cannot be written, because in "read-only" mode) on slave 4

Request:

| Slave no. | Request code | No. of $1^{\text {St }}$ word |  | No. of words |  | No. of bytes | Value of $1^{\text {st }}$ word |  | $\begin{gathered} \text { CRC } \\ \text { Lo } \end{gathered}$ | $\begin{gathered} \text { CRC } \\ \mathrm{Hi} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo |  | Hi | Lo |  |  |
| 4 | 10 | 0C | 81 | 00 | 01 | 02 | 00 | 01 | 8A | D1 |

Response:

| Slave no. | Response <br> code | Error code | CRC <br> Lo | CRC <br> Hi |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 90 | 00 | 5 C | 01 |

## 8. Modbus protocol

## 8. 13. Read non-existent or protected parameters

If a set of parameters is read using a Modbus function, the value returned for non-existent and protected parameters is equal to $16 \# 8000$.
If the same Modbus function is used to read parameters, all of which are non-existent or protected, the drive sends back an exception response with an error code equal to 2 .

## Example of non-existent or protected parameters being read:

In this example, the same request to read a non-existent parameter followed by 2 existing parameters is used several times in a row in order to demonstrate the effects of parameter protection.

The "Read Holding Registers" request (3) is addressed to a drive with a Modbus address of 12 (16\#0C). The read operation is performed for 3 consecutive words, starting with address 8400 .

| Logic address | Parameter | Value |
| :--- | :--- | :---: |
| $8400=16 \# 20 F A$ | Non-existent | - |
| $8401=16 \# 20 D 1$ | [Profile] (CHCF) | 3 |
| $8402=16 \# 20$ D2 | [Copy channel 1 $\leftrightarrow 2]($ COP $)$ | 2 |

Request:

| Slave no. | Request code | No. of 1st word |  | No. of words |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Hi | Lo | Hi | Lo | Lo | Hi |
| OC | 03 | 20 | DO | 00 | 03 | 0 E | EF |

Response:
Scenario no. 1: Parameters CHCF (8401) and COP (8402) not protected $\rightarrow$ Successful reading of these two parameters and value equal to $16 \# 8000$ for the non-existent parameter located at address 8400 .

| Slave no. | Response code | No. of bytes read | Value 8400 |  | Value 8401 |  | Value 8402 |  | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hi | Lo | Hi | Lo | Hi | Lo | Lo | Hi |
| OC | 03 | 06 | 80 | 00 | 00 | 03 | 00 | 02 | 17 | E4 |

Scenario no. 2: Parameter CHCF (8401) protected and COP (8402) not protected $\rightarrow$ Successful reading of COP and value equal to $16 \# 8000$ for the non-existent parameter located at address 8400 and for parameter CHCF.

| Slave no. | Response code | No. of bytes read | Value 8400 |  | Value 8401 |  | Value 8402 |  | $\mathrm{CRC16}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Hi | Lo | Hi | Lo | Hi | Lo | Lo | Hi |
| OC | 03 | 06 | 80 | 00 | 80 | 00 | 00 | 02 | CE | 24 |

Scenario no. 3: Parameters CHCF (8401) and COP (8402) protected $\rightarrow$ Exception response (response code $=16 \# 80+$ request code), as all the parameters read are either non-existent, or protected; error code equal to 2 (the word addresses indicated in the request do not exist in the slave).

| Slave no. | Response code | Error code | CRC16 |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Lo | $H i$ |
| $0 C$ | $80+03=83$ | 02 | 51 | 32 |

## 9. Appendix

## 9. 1. RS485 standard

The RS485 standard (ANSI/TIA/EIA-485-A-1998) allows variants of certain characteristics:

- Polarization
- Line termination
- Distribution of a reference potential
- Number of slaves
- Length of bus

It does not specify the connector type or pinout.
The Modbus specification published on www.modbus.org in 2002 contains precise details of all these characteristics. They are also summarized in the next sections (Modbus 2-wire and 4-wire standard schematics). The latest generation Schneider-Electric devices (Altivar 31, Altivar 71, etc.) conform to this specification.

Older devices comply with earlier specifications. The two most widespread are described in the following sections:

- "Uni-Telway schematic" page 42
- "Jbus schematic" page 43

Requirements enabling different types of protocol to coexist are given in the following section in this appendix:

- "Creating a Modbus bus using non-standard equipment" on page 45


## 9. Appendix

## 9. 2. Modbus 2-wire standard schematic

The standard schematic corresponds to the Modbus specification published in 2002 on www.modbus.org (Modbus_over_serial_line_V1.pdf, Nov 2002) and, in particular, to the 2 -wire multipoint serial bus schematic.

The Modbus card (VW3 A3 303) conforms to this specification.
Schematic diagram:


| Type of trunk cable | Shielded cable with 1 twisted pair and at least a $3^{\text {rd }}$ conductor |
| :---: | :---: |
| Maximum length of bus | 1000 m at 19200 bps with the Schneider-Electric TSX CSA•00 cable |
| Maximum number of stations (without repeater) | 32 stations, i.e., 31 slaves |
| Maximum length of tap links | - 20 m for one tap link <br> - 40 m divided by the number of tap links on a multiple junction box |
| Bus polarization | - One 450 to $650 \Omega$ pull-up resistor to the $5 \mathrm{~V}(650 \Omega$ or thereabouts recommended) <br> - One 450 to $650 \Omega$ pull-down resistor to the Common ( $650 \Omega$ or thereabouts recommended) <br> This polarization is recommended for the master. |
| Line termination | One $120 \Omega 0.25 \mathrm{~W}$ resistor in series with a 1 nF 10 V capacitor |
| Common polarity | Yes (Common), connected to the protective ground at one or more points on the bus |

## 9. Appendix

## 9. 3. Modbus 4-wire standard schematic



## 9. Appendix

## 9. 4. Uni-Telway schematic

The Uni-Telway bus schematic was used by Schneider-Electric for older-generation drives and soft starters (ATV58, ATV28, ATS48, etc.) marketed before the Modbus specifications were published on www.modbus.org.

Schematic diagram:


| Type of trunk cable | Cable with 2 twisted pairs shielded in pairs |
| :--- | :--- |
| Maximum length of bus | 1000 m at 19200 bps |
| Maximum number of stations (without <br> repeater) | 29 stations, i.e., 28 slaves  <br> Maximum length of tap links • 20 m <br> - 40 m divided by the number of tap links on a multiple junction box <br> Bus polarization For the master and each slave: <br> • One $4.7 \mathrm{k} \Omega$ pull-up resistor to the 5 V <br> Line termination One $120 \Omega 0.25 \mathrm{~W}$ pull-down resistor to the 0 VL |
| Common polarity | Yes $(0 \mathrm{VL})$ and high impedance placed between 0 VL and the ground in each station |

## 9. Appendix

## 9. 5. 2-wire Jbus schematic

Schematic diagram:


| Type of trunk cable | Cable with 1 shielded twisted pair |
| :--- | :--- |
| Maximum length of bus | $1,300 \mathrm{~m}$ at 19200 bps |
| Maximum number of stations (without <br> repeater) | 32 stations, i.e., 31 slaves |
| Maximum length of tap links | 3 m |
| Bus polarization | One $470 \Omega$ pull-up resistor to the 5 V <br> One $470 \Omega$ pull-down resistor to the 0 V <br> This polarization is often provided in the master. |
| Line termination | One $150 \Omega$ resistor |
| Common polarity | No |

## 9. Appendix

## 9. 6. Creating a Modbus bus using non-standard equipment

## ■ Different scenarios

If the Modbus bus is created using the latest-generation Schneider-Electric devices and Schneider-Electric Modbus wiring accessories, installation is simple and no calculation is required (see the section entitled "Connecting to the bus").

- If a new Modbus bus has to be created using devices of different brands or older-generation devices, which do not comply with the Modbus standard, several checks are required (see "Recommendations" below).

If, on an existing Modbus bus, a device with $4.7 \mathrm{k} \Omega$ polarization is to be replaced by a new-generation device, set the 2 polarization switches to the lower position to activate the card's $4.7 \mathrm{k} \Omega$ polarization.

Polarization switches:

$4.7 \mathrm{k} \Omega \mathrm{RS} 485$ line polarization at drive level

## - Recommendations

1. Identify the polarities D0 and D1.

They are labeled in different ways depending on the standard:

|  | Standard |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Modbus | EIA/TIA-485 <br> (RS 485) | Uni-Telway | Jbus |
| Signals | D0 | A/A' | D (A) | RD +/TD + or L + |
|  | D1 | B/B' | D (B) | RD -/TD - or L - |
|  | Common | C/C' | OVL |  |
| Receiver | B | G |  |  |

However, certain RS485 electronic components are labeled in the opposite way to the EIA/TIA-485 standard.
It may be necessary to perform a test by connecting a master to a slave, then reversing the connection in the event of failure.
2. Check polarizations

Check the documentation supplied with the devices to determine their polarization.
If there is a polarization, check that the equivalent polarization value is correct (see "Calculating the polarization").
It is not always possible to implement correct polarization (for example, if the 5 V is not available on the master). In this case, it may be necessary to limit the number of slaves.

## 3. Choose a line terminator

If there is a polarization, select an $R C$ line terminator $(R=120 \Omega, C=1 n F)$
If it is not possible to install a polarization, select an $R$ line terminator ( $R=150 \Omega$ ).

## 9. Appendix

## ■ Calculating the polarization

## $\square$ Principle

You must ensure that the equivalent bus resistance is between $162 \Omega$ and $650 \Omega$.
The equivalent bus resistance ( Re ) depends on the polarization resistance of the slaves (Rs) and the master (Rm):

$$
\frac{1}{\mathrm{Re}}=\frac{1}{\mathrm{Rm}}+\frac{1}{\mathrm{Rs}_{1}}+\frac{1}{\mathrm{Rs}_{2}}+\ldots
$$

If Re is too low, reduce the number of slaves.
If Re is too high, adapt the master's polarization (if possible) or add polarization resistors (Rp).

$$
\frac{1}{\mathrm{Re}}=\frac{1}{\mathrm{Rp}}+\frac{1}{R m}+\frac{1}{\mathrm{Rs}_{1}}+\frac{1}{\mathrm{Rs}_{2}}+\ldots
$$



## Example 1

If the master has $470 \Omega$ polarization and all the slaves have $4.7 \mathrm{k} \Omega$ polarization, a maximum of 18 slaves can be connected.
$\mathrm{Rm}=470 \Omega$
$\mathrm{Rs}=4.7 \mathrm{k} \Omega$
$\mathrm{A} / \mathrm{Re}=1 / 470+18 \times 1 / 4700$
i.e., $\operatorname{Re}=168 \Omega$

## Example 2

If the bus polarization Rp is $470 \Omega$ (installed in the master) and 2 slaves have $4.7 \Omega$ polarization, the equivalent polarization is:
$1 / \operatorname{Re}=1 / 470+1 / 4700+1 / 4700$
i.e., $\operatorname{Re}=1 /(1 / 470+1 / 4700+1 / 4700)$
and therefore $\operatorname{Re}=390 \Omega$
$390 \Omega$ is between $162 \Omega$ and $650 \Omega$, and the schematic is correct.

For an ideal equivalent polarization (650 $\Omega$ ), the master's polarization can be adapted so that:
$1 / 650=1 / \mathrm{Rm}+1 / 4700+1 / 4700$
i.e., $R m=1 /(1 / 650-1 / 4700-1 / 4700)$
and therefore $\mathrm{Rm}=587 \Omega$

## 9. Appendix

## 9. 7. RS485 schematic for the card

The RS485 interface on the Modbus card is electrically isolated from the drive.
Schematic diagram:


The polarization switches are used to connect or disconnect the pull-up and pull-down resistors, which implement either Modbus (no slave polarization) or Uni-Telway ( $4.7 \mathrm{k} \Omega$ polarization for each station) type polarization.

## 9. 8. Card connector pinout

| Contact no. | Signal |
| :---: | :--- |
| 1 | Reserved |
| 2 | RXD0 $=\mathrm{RD}(\mathrm{A})$ |
| 3 | $\mathrm{DO}=\mathrm{A} / \mathrm{A}^{\prime}=\mathrm{D}(\mathrm{A})$ |
| 4 | Common $=\mathrm{C} / \mathrm{C}^{\prime}=0 \mathrm{VL}$ |
| 5 | $\mathrm{RxD1}=\mathrm{RD}(\mathrm{B})$ |
| 6 | $\mathrm{RxD1}=\mathrm{RD}(\mathrm{B})$ |
| 7 | $\mathrm{D} 1=\mathrm{B} / \mathrm{B}^{\prime}=\mathrm{D}(\mathrm{B})$ |
| 8 | Not connected |
| 9 | Not connected |


[^0]:    Hi: High order
    Lo: Low order

